Friday, May 12, 2017


This year I've tried as much as possible to contribute to #onegoodthing as I find it helps me reflect on the positive and remember the little things! But over the past few weeks I have had a lot of awesome good things happen that it's too much to fit in a tweet!

It's crazy for me to think about how things have changed in the past month. I had written down some longer term professional goals and been looking for more ways to grow/be in leadership and literally can't believe all of the things that have come my way pretty much over the past 2 weeks.

- I'm (fingers always crossed) going to be teaching Pre-Calc next year for the first time (since student teaching). I am so crazy excited about this. First, I love the content and had fun with it in student-teaching and can't wait to actually get into it as a teacher, now with more experience! And I have an AWESOME colleague teaching the other sections of the class who I totally mesh with. We are already bouncing around ideas about the course, planning, and overall structure. She does interactive notebooks (not yet for Precalc) and is on board with SBG. (Btw I'm hoping to get her on twitter soon ;-) ).

- The rest of my schedule is great and what I asked for. I'll have the Precalc all year every other day, along with one Math 2 honors every other day. I've actually thoroughly enjoyed Math 2 now that NC has changed the standards and some of the content - it has been much more coherent and I'm excited to be at the refining stages of that course now. The rest of my classes will be semester block Math 1. Along with my Math 2 honors, that means I have mostly freshmen which I actually love =). (All these schedule things could shift slightly, but I'm moving in the right direction and very happy!). I'm also happy that I'm looking at 3 preps (not 4) and only one of those being new!!!

Now for my bigger and more surprising opportunities :
- I will be heading up the Math Academic Team for the school ("train" and go to competitions against other schools). I'm really excited to spend time with students who are kind of like me in high school and get to do lots of math together!
- I'm going to be cosponsor of Mu Alpha Theta (Math Honor Society) next year. I've really missed being involved this year, but with being at a new school it was just a little too much to add to my plate this year. I'm hoping to bring some of what I did at my former school over and overall just have a great time!
- I'm going to be leading our Math 1 PLT (Professional Learning Team), basically just those of us teaching Math 1 trying to improve, share ideas, and reflect on what we are doing.
- Our district is doing a "Personalized Learning Cohort". I just found out today I was accepted as part of the first 20 teachers to work through this and develop model classrooms. It really is combining things I've already implemented like SBG and mastery learning, plus my videos and I'm excited to see how this pans out in the classroom and helping more of my students achieve mastery. Here's the graphic they are using to describe it:
A Path to Personalized Learning.png

I can't wait to get started (we will have a conference at the end of the school year for it) and think about how to take what I'm already doing to the next level and really hope this means I have more of an opportunity to try a more authentic SBG system - but we will see!

Thanks for reading =). I just wanted to share all my exciting news with y'all!

Saturday, January 14, 2017

Systems of Equations

Not saying this is a ground breaking unit or anything, but I do love my new INB pages so thought I'd share <3

Intro and Solving by Graphing

Solving by Substitution

Solving by Elimination (aka I <3 flowcharts and being goofy)

Links to the docs (see, I CAN write a short blogpost!)

Math 1 (or 2 or 3) Factoring Unit =)

Hey guys.
Instead of going in order of my units, I decided to start with some of my faves first. I love factoring and I love how I progress through factoring. Hopefully eventually I'll do a vlog (never done one)/video talking you through how I build coherence through multiplying, factoring, and dividing - but until then, here's how I initially progress through factoring. I use the box/area/partial products method for factoring, so students are already used to using that framework.

My order:
Finding a GCF
Factoring out a GCF ("skinny box" AND intro factoring GCF from a 2x2 box)
Difference of Squares (this could also go at the end after trinomials)
Factoring trinomials where a = 1 ("X factor", aka just sum/product puzzles if you know those)
Factoring trinomials where a isn't 1 ("X Box" originally inspired by Julie at ispeakmath.)
Factoring completely

First thing is we need to establish what a GCF is and how to find it, which is part of a class period. The rest of the day we talk about factoring out a GCF from a polynomial by putting each term into a compartment of the hence forth "skinny box".

The same day and the beginning of the next we talk about factoring out of a 2x2 box. I think this is one of the key elements that helps my students be so successful later when we do trinomials. Hint: I used to teach this part as finding the GCF of each row/column but now just have them find the GCF of the first row and then go around saying what times (GCF) gives me whats in the box? Works SO much better now and works seamlessly with the intuition for dividing polynomials with the box in Math 3 (coherence!!!)

The next day we move onto Difference of Squares - next semester I might move this to the end. Stole the note form from Sarah Carter at mathequalslove. My twist with this is my "Difference of Squares" rap. While I haven't video taped it. I guess someone in my class recorded this and entitled it "When Math Teachers Try to Make Class Fun" <3 . Before direct instruction I have them multiply out several difference of squares to notice/wonder about the pattern.

Me doing it (slower than I usually do so they can see the steps)

Brave student then doing it for the class (LOVE HER!)

It's ridiculously cheesy but one of the best feelings later when the students learn it and you have a whole class getting into it with you. =)

Next up is trinomials where a is one which I affectionately call the "X Factor"...because you use an X, and you are factoring...and I love puns, especially if they are terrible. 

I give students a sum/product puzzle where at first all the numbers are given and I ask them to find a pattern that works for all the Xs. (Love introing things as a puzzle, because isn't that really all factoring is?! and you get more interest/buy in from students when you present it this way). We then talk about how to use this method to factor. Once we move onto where a isn't 1 we talk about why it always starts with (x    ) (x      ) if your a is 1. 

Then we move onto X Box. To start this off, I give them a filled in box and have them find the GCF and all the sides like we did Day 1. How was that? "Easy" then I have them do an X Factor problem. How was that? "Easy" I then write up the original polynomial we started with and ask them to notice/wonder about where the different numbers and terms are coming from in the original polynomial so that they practically discover the process for themselves. Thanks to Elissa @misscalcul8 for typing up my notes!

By the way, throughout all of this I'm constantly emphasizing that factoring is just rewriting a problem as multiplication. 

Last, we factor completely. For that I made a handy dandy flow chart because, let's face it, I <3 flow charts. 

Here's the link to my documents that I've actually created. I will add others to the same link as I get around to typing them up! Sorry for the awful handwritten copies for now, but hey - something is better than nothing! 

Here are my old youtube videos explaining it if you are still curious. Notes: I was still doing the GCF for all rows/column method in the X Box Video =/


Difference of Squares:

X Factor

X Box:

SIDE NOTE: I actually am changing things up a bit by introducing solving by factoring/zero product property first and then practicing with every new method. I found this semester that it really helped students distinguish between what "factor" and "solve" meant!